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Individual agreement between two measurement systems is determined using the
total deviation index (TDI) or the coverage probability (CP) criteria as proposed
by Lin (2000) and Lin et al. (2002). We used a variance component model as
proposed by Choudhary (2007). Using the bootstrap approach, Choudhary (2007), and
generalized confidence intervals, we construct bounds on TDI and CP. A simulation
study was conducted to assess whether the bounds maintain the stated type I error
probability of the test. We also present a computational example to demonstrate the
statistical methods described in the paper.
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1. INTRODUCTION

An important problem that arises in many method comparison studies is
the assessment of individual agreement of two competing methods, processes,
formulations, instruments, assays, or two measurement systems. Very frequently,
the new method measures an attribute where direct measurement is difficult or
impossible. Since the true value remains unknown, the new method is evaluated
by assessing its agreement to an established (reference) method instead of the true
quantity. If the new and the reference measurement systems agree sufficiently well,
the reference may be replaced or both measurement systems used interchangeably.
Equivalence testing is an approach commonly used to determine the acceptability
of a new method against a reference method.

If the methods are used to make decisions based on individuals rather than
on population characteristics, a measure of individual agreement is preferable.
Lin (2000) and Lin et al. (2002) developed the total deviation index (TDI) and
the coverage probability (CP) for assessing individual agreements. These criteria
are intuitive measures of agreement that indicate a proportion of the data are within
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a boundary. Both the TDI and CP are attractive criteria because they are easy
to interpret. Lin et al. (2007) and Barhhart et al. (2007) extended the TDI and CP
to data with multiple methods and multiple observations on the same subject. These
authors also discuss other measures of agreements.

Paired measurements on the same subject occur naturally in method
comparison studies where individual agreement is of interest. Experiments with
paired measurements are repeated multiple times on the same subject and can
be described by repeated measurement designs. These designs allow one to estimate
the variability of each method. This variability can be an important component in
the estimation of a repeatability parameter. The TDI and CP criteria can be used
in this repeated measurement design. The model proposed originally by Lin (2000)
and Lin et al. (2002) was not easily adaptable to this setting. Choudhary (2007) used
an analysis of variance (ANOVA) approach to assess individual agreement using
the TDI and CP criteria in a model with repeated measurements. The ANOVA
approach is easy to use and widely available to practitioners. Choudhary and
Nagaraja (2007) developed a bootstrap approach to construct bounds on TDI and
CP. The bootstrap approach was later applied to mixed models with repeated
measurements by Choudhary (2007). However, this bootstrap approach is based
on large-sample properties and may not perform well for small sample data that
are frequently an issue in method comparison studies. In this paper, we propose
constructing bounds for the TDI and CP criteria using a variance components
approach and generalized confidence intervals. Simulation study suggests that these
bounds are good alternatives to the bootstrap approach.

In the following sections we define the ANOVA model using repeated measure-
ments and describe the TDI and CP to measure individual agreement of two com-
peting methods. We present tests on TDI and CP based on a bootstrap method and
generalized confidence intervals. We also present a simulation study to compare the
performance of the bounds and a computational example to demonstrate the tests.

2. THE EXPERIMENTAL DESIGN

Consider a study to assess the individual agreement between two methods.
The standard experiment employs a repeated measurements design. On each
occasion, simultaneous, continuous measurements on the same subject are obtained
using a competing and a reference method. The experiment is repeated n times.
The resulting responses are paired continuous measurement replicates. We also
assume that interaction between the methods and the subject is present. For
simplicity, we denote the competing system as test �T� and the standard system as
reference �R�. A measurement is described by the ANOVA model

Yijk = �i + Sj + �MS�ij + Eijk i = T�R� j = 1� � � � � s� k = 1� � � � � n (1)

where Yijk is the kth measurement from subject j obtained with method i, �T and
�R are the means of the test and reference systems, respectively, Sj are independent
normal random variables with mean 0 and variance �2

S , �MS�ij are independent normal
random variables with mean 0 and variance �2

iS , and Eijk are independent normal
random variables with mean 0 and variance �2

i . The random interaction and error
terms are independent from each other.
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Table 1 A repeated measurements design with three subjects and
two paired measurements per subject

Subject Replicate Reference Test Paired difference

1 1 YR11 YT11 D11

2 YR12 YT12 D12

2 1 YR21 YT21 D21

2 YR22 YT22 D22

3 1 YR31 YT31 D31

2 YR32 YT32 D32

Table 1 displays a schematic illustration of the ANOVA design with three
subjects and two paired measurements per subject.

Model (1) in matrix form is

Y = X� + Z1U 1 + Z2U 2 + � (2)

where Y� = 	YT11� � � � � YTsn� � � � � YR11� � � � � YRsn
, X = I2 ⊗ 1s ⊗ 1n, Z1 = 12 ⊗ Is ⊗
1n, Z2 = I2 ⊗ Is ⊗ 1n, �� = 	�T �R
, U�

1 = 	S1� � � � � Sn
, U�
2 = 	�MS�T1� � � � �

�MS�Ts� �MS�R1� � � � � �MS�Rs
, and � is multivariate normally distributed with mean
01×2sn, and variance

Var��� = �E ⊗ Is ⊗ In� (3)

where

�E =
[
�2
T 0

0 �2
R

]
� (4)

In the matrix notation used above, the vector 1p is a p× 1 vector of ones,
Jp is a p× p matrix of ones, Ip is an identity matrix of order p, Pp = �1/p�Jp,
Qp = Ip − Pp, and ⊗ is the right direct (Kronecker) product operator.

Under the assumption of normality, the vector Y is multivariate normal with
mean X� and variance–covariance matrix

Var�Y � = �2
S�J2 ⊗ Is ⊗ Jn�+ �MS ⊗ Is ⊗ Jn + �E ⊗ Is ⊗ In� (5)

where

�MS =
[
�2
TS 0

0 �2
RS

]
� (6)

The measure of individual agreement is based on the difference Djk = YTjk −
YRjk, where YTjk and YRjk are measurements obtained on the same subject at the
same time using the test and reference methods, respectively. Following an idea
from Choudhary (2007), we used the difference of paired measurements to construct
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bounds on TDI and CP. Based on the specification of model (1), the difference of
paired measurements is described by the ANOVA model

Djk = �D + Ij + Njk j = 1� � � � � s� k = 1� � � � � n� (7)

where Djk is the difference of paired measurements on the same subject, Ij are
independent normal random variables with mean 0 and variance �I = �2

TS + �2
RS ,

and Njk are independent normal random variables with mean 0 and variance
�E = �2

T + �2
R. From the assumption of model (1), the random error terms are

independent from each other.
Model (7) in matrix form is

D = XD�D + ZDUD + � (8)

where D� = 	D11� D12� � � � � D1n� � � � � Ds1� � � � � Dsn
, XD = 1s ⊗ 1n, ZD = Is ⊗ 1n,
the scalar �D = �T − �R, U

�
D = 	I1� � � � � Is
, and  is multivariate normally distributed

with mean 01×sn and variance �EIsn.
The ANOVA for model (7) is shown in Table 2 where the sum of squares in

quadratic forms SSI = D��Qs ⊗ Pn�D, and SSE = D��Is ⊗Qn�D.
Under the assumption of model (7), the mean squares S2

I and S2
E are

independent. Additionally, nIS
2
I /�I and nES

2
E/�E are chi-squared random variables

with nI and nE degrees of freedom, respectively.
From the assumption above, the paired difference Djk is normally distributed

with mean �D and variance �2
D = �I + �E . The random variable �2 = D2

jk/�
2
D has a

noncentral chi-squared distribution with one degree of freedom and noncentrality
parameter

�D = �2
D

�2
D

� (9)

Other random variables of interest are D∗∗, and D
2
∗∗, where D∗∗ =∑s

j=1

∑n
k=1 Djk/�sn�. The random variable D∗∗ is normally distributed with mean

�D = �T − �R and variance �I/�sn�. From the delta method, the random variable
D

2
∗∗ is approximately normally distributed with mean �2

D and variance 4�2
D�I/�sn�.

3. MEASURE OF INDIVIDUAL AGREEMENTS

Consider a method comparison study to determine the agreement of two
methods. Without loss of generality, the two methods can be described by two
measuring systems, two formulations, two biological assays, or two processes.

Table 2 ANOVA for Model (7)

Source of variation DF MS EMS

Subjects (I) nI = s − 1 S2
I = SSI/nI �I = n�I + �E

Error (N ) nE = s�n− 1� S2
E = SSE/nE �E = �E
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Often, the true value measured with the methods is unknown, and the new method is
compared to an established method. Thus, both methods contain some measurement
error. The competing method is represented by T and the reference method by R.

Lin (2000) and Lin et al. (2002) proposed the TDI and CP criteria as two
user-friendly measures of individual agreement for paired measurements. Measures
of individual agreements extended to more than two methods is discussed in Lin
et al. (2007) and Barhhart et al. (2007). In this paper, we restrict our discussion to
comparison of two methods. The TDI describes a boundary such that a majority
of the differences of paired observations are within the boundary. In particular, the
TDI for a particular percentage, �0, is the boundary ��0

such that

�0 = Pr	�YTjk − YRjk� ≤ ��0

� (10)

Note that

�0 = Pr	�Djk� ≤ ��0

 = Pr

[
�2 ≤ �2

�0

�2
D

]
� (11)

Under the assumption above, the TDI becomes

��0
=

√
�2
D�

2�−1���0� 1� �D�� (12)

where �2�−1���0� 1� �D� is the �0th percentile of a noncentral chi-squared random
variable with one degree of freedom and noncentrality parameter �D = �2

D/�
2
D.

The TDI criterion can easily translate to an equivalence specification. To
illustrate, consider the specification that two methods are equivalent if a large
proportion of absolute paired differences are within a specified value, �0. More
specifically, two methods are equivalent if at least 90% of the absolute paired
differences are less than 10. We can use the following hypothesis test to demonstrate
equivalence:

H0 � �0�90 ≥ 10 vs� Ha � �0�90 < 10� (13)

We can test this set of hypotheses by constructing a 95% upper bound on �0�90.
If the upper bound is less than 10, the two methods are declared equivalent.

Conversely, the coverage probability (CP) is the probability that the absolute
paired differences are within a specified boundary. From Equation (10), we can
define the CP for a specified boundary �0 as

��0
= �

(
�0 − �D√

�2
D

)
−�

(−�0 − �D√
�2
D

)
� (14)

where � is a cumulative normal distribution with mean 0 and variance 1.
The CP criterion also translates into an equivalence specification. Using the

equivalence specification defined above, we can use the following hypothesis test to
demonstrate equivalence:

H0 � �10 ≤ 0�90 vs� Ha � �10 > 0�90� (15)
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To test this hypothesis, one can construct a 95% lower bound on �10. Equivalence
is declared if the lower bound is greater than 0.90.

For specified �0 and �0, the hypotheses ��0
≥ �0 and ��0

≤ �0 are equivalent.
Thus, individual agreement can be assessed using either one of the hypotheses
in Equations (13) and (15). The choice whether to use the TDI or CP criterion
should be based on whether the emphasis of the comparison method study is on the
boundary or the percentage.

The hypothesis in Equation (13) allows one to control the consumer’s risk. The
consumer’s risk is the probability of rejecting the inequivalence hypothesis (the null
hypothesis) when it is true (Type I error) at a predetermined level (usually 5%). That
is, the consumer’s risk is the probability of accepting a truly bad competitor method.
The hypothesis in Equation (15) also controls consumer’s risk.

4. STATISTICAL INFERENCE

We discuss two methods for constructing confidence intervals on TDI and CP.
The first method is based on a parametric bootstrap as proposed by Choudhary
(2007) and the second method on the concept of generalized confidence intervals
introduced by Tsui and Weerahandi (1989). Both methods are based on Monte
Carlo simulation.

4.1. Bootstrap Confidence Intervals

The bootstrap method as proposed by Choudhary (2007) is based on the
large sample property and the delta method. This method was also used in a study
without repeated measurements by Choudhary and Nagaraja (2007). The method
is performed by replacing the parameters �D, �2

D, and �D with their maximum
likelihood estimators (MLE) and using some large sample properties. The MLEs are
shown in Table 3. See the Appendix for more details.

To demonstrate, the algorithm used to compute bootstrap intervals on ��0
is

as follows:

1. Compute the MLE for �D, �I , �E , �
2
D, and �D for the collected data and denote

them as �̃D,�̃I , �̃E , �̃
2
D, and �̃D as indicated in Table 3.

2. Compute �̃�0
using Equation (12) by replacing the parameters �D, �

2
D, and �D

with their respective MLE for the collected data. Also, compute �̃2
ln � using

Equation (28) in the Appendix.

Table 3 Maximum likelihood estimators

Maximum
Result Parameter likelihood solutions

1 �I �̃I = �1−1/s�S2I −S2E
n

2 �E �̃E = S2
E

3 �D �̃D = D∗∗
4 �2

D = �I + �E �̃2
D = �̃I + �̃E

5 �D = �2D
�2D

�̃D = �̃2D
�̃2D
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3. Generate a set of D∗ by replacing the values �D, �I , �E with the MLE values
computed in Step 1 in model (7). With the generated values D∗, compute �̃∗

�0
using Equation (12) by replacing their MLE computed for the simulated values.

4. Using the sample estimate from Step 2 and the bootstrap estimate from Step 3,
compute

Z∗
B = �ln �̃∗

�0
− ln �̃�0

�√
�̃2
ln �

� (16)

5. Repeat Steps 3 and 4, B times. In our simulation and example, we set B = 1999,
as used by Choudhary (2007).

6. Order the B values obtained in Step 4 from least to greatest.
7. Select the value in the B × � position of the ordered set in Step 7 and denote it

by zB���.
8. Define the upper bound on ��0

for a 100�1− ��% interval as

U� = exp
(
ln �̃�0

− zB���

√
�̃2
ln �

)
� (17)

A 100�1− ��% lower bound on ��0
can be constructed graphically as follows.

Generate values U�i
for different �i, define the lower bound, L�, as the smallest �j

with U�j
≥ �0.

4.2. Generalized Confidence Intervals

Generalized confidence intervals require the construction of generalized
pivotal quantities. The construction of generalized confidence intervals on the
TDI and CP criteria is performed by replacing the parameters �D, �2

D, and �D
with generalized pivotal quantities (GPQs). The GPQ is an extension of the
standard notion of a pivotal quantity. For more on the development and properties
of the GCI method, the reader is referred to Weerahandi (1993, 1995), and
Hannig et al. (2006).

We determine the GPQs following a method described in Burdick et al. (2005,
Appendix B). One must first express the variance as a linear combination of the
variance components as

�2
D = �I + �n− 1��E

n
� (18)

The GPQs are shown in Table 4, where d∗∗, ssI , and ssE are realized values of
D∗∗, SSI , and SSE , respectively, Z1 and Z2 are independent normal random variables
with mean zero and variance one, WI and WI1 are independent chi-squared random
variables with degrees of freedom s − 1, and WE is a chi-squared random variable
with degrees of freedom s�n− 1�.

To demonstrate, the algorithm used to compute a generalized confidence
interval for ��0

or ��0
is as follows:

1. Compute D∗∗, SSI , and SSE for the collected data and denote the realized values
as d∗∗, ssI , and ssE , respectively.
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Table 4 Generalized pivotal quantities

Result Parameter GPQ

1 �2
D GPQ�2D

=
(

ssI
WI

+ �n−1�ssE
WE

)
/n

2 �2
D
= �I/sn GPQ�2

D
= ssI /snWI1

2 �D = �T − �R GPQ�D
= d∗∗ − Z1

√
GPQ�2

D

2 �2
D GPQ�2D

= max
[
0� d

2
∗∗ − 2Z2�GPQ�D

�√GPQ�2
D

]
3 �D = �2D

�2D
GPQ�D

= GPQ�2D
/
√
GPQ�2

D

2. Simulate N values of each GPQ shown in Table 4 by simulating N independent
values each of Z1, Z2, WI , WI1, and WE .

3. Compute N values of ��0
or ��0

(depending on the approach used) using
Equations (12) or (14) by replacing unknown parameters with the GPQ formed
in Step 2.

4. Order the N values obtained in Step 3 from least to greatest.
5. Define the upper bound on ��0

(lower bound on ��0
) for a 100�1− ��% interval

as the value in the position N × �1− �� [(N × �� for lower bound] of the ordered
set in Step 4.

Similar to the bootstrap approach, an alternative way to construct a lower
bound on CP is to generate upper bounds on TDI, Û�i

for different values �i, and
define the lower bound on CP as the smallest value �j with Û�j

≥ �0.

5. SIMULATION STUDY

Individual agreement as discussed in this paper is measured with either the
TDI or the CP criterion. The procedure to measure individual agreement with either
of the criteria is to calculate a 95% bound on the parameter of interest. In particular,
when the agreement is determined using TDI with the hypothesis in Equation (13),
the new method is accepted if the computed 95% upper bound on TDI is less than
a specified value �0 (10 in Equation (13)). When agreement is determined using CP
with the hypothesis in Equation (15), the new method is accepted if a 95% lower
bound on CP is greater than a specified value �0 (0.90 in Equation (15)). Since the
exact distribution of these bounds is unknown, a simulation study was conducted
to assess whether these bounds maintain the stated type I error probability of the
tests. Since for specified values �0 and �0, the hypotheses ��0

≥ �0 and ��0
≤ �0 are

equivalent, we conducted our simulation study based on the TDI.
Simulation designs were established by selecting values for �T − �R, �

2
S , �

2
Ts,

�2
Rs,�

2
T , and �2

R. We set �2
S = 100 for all combinations because it is not required

for constructing the bounds. The examined parameter combinations are shown in
Table 5. TDI and CP were computed using Equations (12) and (14) and replacing
unknown parameters with their respective values in the design. To estimate the
type I error probability of the tests, we arbitrarily defined one acceptability criterion.
The designs were chosen so that at least 93�5% of the paired differences in absolute
value were less than 10. The value 93�5% was selected to facilitate selection of
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Table 5 Simulation designs

�T − �R �2
Ts �2

Rs �2
T �2

R TDI CP �D = �2D
�2D

1.200 8.000 8.000 6.000 6.000 10.011 0.935 0.051
2.500 1.000 0.900 9.000 12.500 10.015 0.935 0.267
2.980 5.000 5.000 5.500 5.500 10.003 0.935 0.423
4.150 3.750 3.750 3.750 3.750 10.018 0.934 1.148
5.000 0.900 1.500 4.500 4.000 9.999 0.935 2.294
5.000 1.500 0.900 4.000 4.500 9.999 0.935 2.294
5.800 5.000 0.600 2.000 0.100 10.001 0.935 4.369
5.800 0.600 5.000 0.100 2.000 10.001 0.935 4.369
7.000 0.950 0.950 0.950 0.950 9.952 0.938 12.895
8.500 0.250 0.250 0.250 0.250 10.014 0.933 72.250
9.000 0.250 0.100 0.050 0.050 10.016 0.932 180.000

parameters. Simulations were conducted with combinations of s = 10� 20� 40 and
n = 2� 3� 5. This resulted in a total of 99 designs. Table 5 reports the noncentrality
parameter, �D, based on Equation (9). The range of �D for the simulation designs
goes from 0.051 to 180.0. Thus, the designs used in the simulation study cover a
wide range of parameters.

All simulations were conducted using SAS PROC IML as follows. One of the
99 designs was selected and 2,000 datasets were simulated using the SAS function
RANNOR. The boostrap-t bounds were based on 1,999 bootstrap samples, and
the GCI bounds were based on 10,000 GPQ values as described in the procedures
outlined earlier. The probability based on the inverse noncentral chi-squared and
univariate normal distributions in Equations (12) and (14) were computed using
the SAS functions CINV and PROBNORM, respectively. The probability density
function for the normal distribution, �, was computed using the SAS function
PDF with specified distribution NORMAL. The empirical power (or type I error
probability of the test under the null hypothesis) was determined by counting the
number of times the null hypothesis was rejected.

The simulation results for the stated type I error probability of 0.05 for TDI
and different sample sizes are displayed in Fig. 1. The purpose of the simulation is
to demonstrate that the type I error probability of the test (i.e., consumer’s risk) is
at most the stated test level of 0.05. By using the binomial model, if the true test
size is 0.05, there is less than a 5% chance that an estimated test size based on 2,000
simulation will be greater than 0.06. If the test maintains the type I error probability,
the maximum value in Fig. 1 should be (apart from simulation error 	� 0�01
�
the stated test size of 0.05. Some of the values exceed the type I error probability
because the specification limits were not exactly equal to the specification limit of 10.

It appears that the bootstrap method has type I error probability greater than
the stated level. Also, as the number of subjects increases, for fixed n, type I error
probability for GCI approaches the stated level. That is, the type I error probability
of GCI increases as the number of subjects increases. The same is true as the number
of replicates increases for a fixed number of subjects. Simulation results were also
completed for a design with �0 = 0�223 and �0 = 75%. These simulation results were
consistent with those reported in this paper.
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Figure 1 Side-by-side plots of type I error probability of tests by number of subjects and number of
replicates. The results marked with “B” correspond to the bootstrap method, and “G” correspond to
the generalized confidence interval method.

6. AN EXAMPLE APPLICATION

We demonstrate the procedures described in this article with a dataset used
in Bland and Altman (1986). The goal of the study was to compare two methods
of measuring peak expiratory flow rate (PEFR). The data consist of two paired
measurements on the same subject made with a large Wright peak flow meter and
a mini Wright meter. Paired differences that are less than 10 l/min are considered
of no practical clinical significance. That is, paired difference of less than 10 l/min
would not affect decisions on patient management. Therefore, the large meter can
be replaced, or the two meters can be used interchangeably if a large proportion
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Table 6 MLE computation for example

Term Equation Value in sample

�̃D 5.971
�̃2
D Table 3 1354.793

�̃D (9) 0.026
�̃0�90 Table 3 and (12) 61.34
�̃2
ln � (28) 301.851

�̃10 Table 3 and (14) 0.211

(at least 90%) of the PEFR readings taken by the two meters on the same subject
are within 10 l/min.

A serious error would be to declare the mini meter as effective as the large
meter when it is not. Thus, it is important to put a cap on the consumer’s risk and
an equivalence testing setting is preferred. To demonstrate the method proposed
in the paper, we test for equivalence using the above equivalence specification for
hypotheses on the TDI and the CP.

From Table 6, the absolute difference between the sample means is 5.971,
the estimated noncentrality parameter is 0.026, the estimated MLE �0�90 is 61.34,
and the estimated MLE �10 is 21�1%. The estimated mean squares for the data are
shown in Table 7.

The equivalence of the meters can be tested using the following hypothesis test
on the TDI:

H0 � �0�90 ≥ 10 vs� Ha � �0�90 < 10� (19)

With 10,000 generated GPQ’s, a 95% GCI upper bound for �0�90 is 85.34 l/min. With
1,999 bootstrap samples, a 95% bootstrap-t upper bound for �0�90 is 79.14 l/min.
Note that the fact the bootstrap bound is a “tighter” bound is likely due to an
inflated type I error probability. Since both upper bounds are greater than 10, the
meters are not equivalent based on either of the tests.

To demonstrate how to construct lower bounds on CP, consider the
equivalence specification that the meters are equivalent if at least 90% of
the absolute difference is less than 10. With this specification, we can test
the equivalence of the meters using a hypothesis test on the CP:

H0 � �10 ≤ 0�90 vs� Ha � �10 > 0�90� (20)

With 10,000 generated GPQ’s, a 95% lower bound for �10 is 15�1%. Table 8 displays
some computed upper bounds on TDI values for specified CP values based on 1,999

Table 7 ANOVA based on Table 2 for example

Source of variation DF MS

Subjects (I) 16 2209.90
Error (N) 17 629.68
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Table 8 Upper bound on TDI for specified values CP

Specified 95% bootstrap 95% GCI
CP upper bounds TDI upper bounds TDI

0.111 6�663 7�278
0.121 7�395 7�956
0.131 7�929 8�673
0.141 8�551 9�339
0.151 9�207 9�999
0.161 9�859 10�572
0.171 10�404 11�280
0.181 11�029 11�950
0.191 11�556 12�666
0.201 12�232 13�337
0.211 12�794 14�052

bootstrap samples. For illustration purposes, we include GCI upper bounds for the
same CP values. Note that the result obtained with this approach is similar to the
GCI approach where we directly computed the bound on CP. Table 8 indicates that
a 95% lower bound on �10 lies between 16�1% and 17�1%. Using a linear regression
line, the estimated 95% lower bound on �10 is 16�5%. Since both lower bounds are

Figure 2 Difference vs. average plot. The TDI and CP values were calculated using the MLEs.
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less than 90%, the mini meter is not equivalent to the large meter based on either of
the bounds.

Both results indicate that there is high level of disagreement between the mini
and large meters. This conclusion is also illustrated by Fig. 2 which displays a
scatterplot of paired differences vs. averages of paired PEFR.

7. CONCLUSION

In this paper we propose an equivalence test for assessing individual agreement
based on the total deviation index and the coverage probability. The bounds used
in the tests were constructed using a bootstrap approach and generalized confidence
intervals.

The simulation results suggest that, in general, the bounds constructed using
the bootstrap approach do not maintain the stated test size for sample sizes of 10
and 20 subjects. The bootstrap method generally maintains the stated test size for
sample size of 40 subjects. On the other hand, the generalized confidence intervals
maintain the stated test size for all sample sizes of subjects considered in the study.
Thus, the GCI approach is preferred for comparative studies with small samples and
provides a good alternative for moderate to large samples.

The GCI approach, at least as presented in this paper, is applicable when
repeated measurements for the two methods are paired and the true values of the
measured quantities do not change over time. Like the definition of TDI and CP, the
proposed methods also depend on the assumption of normality. The robustness of
the proposed methods to these assumptions were not studied in our paper. However,
it has been our experience that these assumptions are realistic in these applications.

APPENDIX

LARGE SAMPLE PROPERTY OF ln �̃�

In this section, we derive a result used in the construction of the bootstrap-t
confidence intervals. The bootstrap-t requires the maximum likelihood estimate for
�D, �I , and �E . From Searle et al. (1992), the maximum likelihood estimates for
�D, �I , �E are

�̃D = D∗∗� (21)

�̃I = 1
n

(
�1− 1/s�S2

I − S2
E

)
� and (22)

�̃E = S2
E� (23)

respectively, with large-sample variance–covariance matrix or inverse information
matrix

�−1 = 1
s

�I 0 0

0 2
(

�2I
n
+ 2�2E

n�n−1�

)
− 2�2E

n−1

0 − 2�2E
n−1

2n�2E
n−1

 � (24)

where �I and �E are expected mean squares in Table 2.
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From the multivariate delta method, the random variable

ln �̃�0
− ln ��0√
�2
ln �

(25)

is asymptotically normally distributed with mean 0 and variance 1, where �̃�0
is ��0

evaluated by replacing the MLE of �D, and �2
D, and

�2
ln � = G��−1G� where (26)

G =


� ln ��0
��D

� ln ��0
��I

� ln ��0
��E

 = 1
��


��qu�−��ql�

��qu�+��ql�√
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��qu�+��ql�

)
√

�2D
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)
 � (27)

where � is the probability density function of a normal distribution with mean 0
and variance 1, qu = ��� − �D�/

√
�2
D, and ql = �−�� − �D�/

√
�2
D.

By simple matrix multiplication, we obtain

�2
ln � =

1
�2
�
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(28)

where �−1
rc is the entry located in the rth row and cth column of the matrix �−1.
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